4768 Statistics 3

Q1	$f(x)=k(20-x) \quad 0 \leq x \leq 20$			
(a) (i)	$\begin{aligned} & \int_{0}^{20} k(20-x) \mathrm{d} x=\left[k\left(20 x-\frac{x^{2}}{2}\right)\right]_{0}^{20}=k \times 200=1 \\ & \therefore k=\frac{1}{200} \end{aligned}$ Straight line graph with negative gradient, in the first quadrant. Intercept correctly labelled (20, 0), with nothing extending beyond these points. Sarah is more likely to have only a short time to wait for the bus.	M1 A1 G1 G1 E1	Integral of $\mathrm{f}(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical approach using the area of a triangle. C.a.o.	5
(ii)	$\begin{aligned} & \text { Cdf } \mathrm{F}(x)=\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ &=\frac{1}{200}\left(20 x-\frac{x^{2}}{2}\right) \\ &=\frac{x}{10}-\frac{x^{2}}{400} \\ & \begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{F}(10) \\ & =1-(1-1 / 4)=1 / 4 \end{aligned} \end{aligned}$	M1 A1 M1 A1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0, 20]. Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area $=1 / 2(20-10) f(10)$, or similarity.	4
(iii)	Median time, m, is given by $F(m)=1 / 2$. $\begin{aligned} & \therefore \frac{m}{10}-\frac{m^{2}}{400}=\frac{1}{2} \\ & \therefore m^{2}-40 m+200=0 \\ & \therefore m=5.86 \end{aligned}$	M1 M1 A1	Definition of median used, leading to the formation of a quadratic equation. Rearrange and attempt to solve the quadratic equation. Other solution is 34.14 ; no explicit reference to/rejection of it is required.	3

(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1	E1	
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1	E1	For "practical" accept e.g. convenient / efficient / economical.

Q2	$\begin{aligned} & A \sim \mathrm{~N}(100, \quad \sigma=1.9) \\ & B \sim \mathrm{~N}(50, \quad \sigma=1.3) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(A<103) & =\mathrm{P}\left(\mathrm{Z}<\frac{103-100}{1.9}=1.5789\right) \\ & =0.9429 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)		B1 B1 A1	Mean. Variance. Accept sd (= 3.291). c.a.o.	3
(iii)	$\begin{aligned} & A+B \sim \mathrm{~N}(150, \\ & \left.\sigma^{2}=1.9^{2}+1.3^{2}=5.3\right) \\ & \mathrm{P} \text { (this }>147)=\mathrm{P}\left(Z>\frac{147-150}{2 \cdot 302}=-1.303\right) \\ & =0.9037 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 2.302). c.a.o.	3
(iv)	$\begin{aligned} & B_{1}+B_{2}-A \sim N(0, \\ & \left.\quad 1 \cdot 3^{2}+1 \cdot 3^{2}+1 \cdot 9^{2}=6 \cdot 99\right) \\ & \mathrm{P}(-3<\text { this }<3) \\ & =\mathrm{P}\left(\frac{-3-0}{2.644}<Z<\frac{3-0}{2.644}\right)=\mathrm{P}(-1 \cdot 135<\mathrm{Z}<1 \cdot 135) \\ & =2 \times 0.8718-1=0.7436 \end{aligned}$	B1 B1 M1 A1 A1	Mean. Or $A-\left(B_{1}+B_{2}\right)$. Variance. Accept sd (= 2.644). Formulation of requirement two sided. c.a.o.	5
(v)	Given $\quad \bar{x}=302.3 \quad s_{n-1}=3.7$ Cl is given by $\quad 302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$ $\begin{aligned} & =302 \cdot 3 \pm 0 \cdot 7252=(301 \cdot 57(48), \\ & 303 \cdot 02(52)) \end{aligned}$ The batch appears not to be as specified since 300 is outside the confidence interval.	M1 B1 A1 E1	Correct use of 302.3 and $3.7 / \sqrt{100} .$ For 1.96 c.a.o. Must be expressed as an interval.	4
				18

Q3				
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\mathrm{H}_{0}: \mu_{D}=0$ $\left(\right.$ or $\left.\mu_{l}=\mu_{l l}\right)$ $\mathrm{H}_{1}: \mu_{D} \neq 0$ $\left(\right.$ or $\left.\mu_{l l} \neq \mu_{l}\right)$ where μ_{D} is "mean for II - mean for I" Normality of differences is required.	B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}_{I}=\bar{X}_{I I}$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	3
(ii)	MUST be PAIRED COMPARISON t test. Differences are: Test statistic is $\frac{11.6-0}{\frac{17.707}{\sqrt{ } 8}}$ $=1.852(92)$ Refer to t_{7}. Double-tailed 5% point is 2.365 . Not significant. Seems there is no difference between the mean yields of the two types of plant.	16.3 M1 A1 M1 A1 A1 A1	11.5 $s_{n}=16.563$ but do NOT allow this here or in construction of test statistic, but FT from there. Allow c's \bar{d} and/or s_{n-1}. Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}(=14.806)$ for subsequent comparison with \bar{d}. (Or $\bar{d}-(c$'s 2.365$) \times \frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{d}$ scores M1A0, but ft. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{8} and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7

