4768 Statistics 3

Q1	$f(x) = k(20 - x)$ $0 \le x \le 20$			
(a) (i)	$\int_{0}^{20} k(20-x) dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_{0}^{20} = k \times 200 = 1$	M1	Integral of $f(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical	
	$\therefore k = \frac{1}{200}$	A1	approach using the area of a triangle. C.a.o.	
	Straight line graph with negative gradient, in the first quadrant.	G1		
	Intercept correctly labelled (20, 0), with nothing extending beyond these points.	G1		
	Sarah is more likely to have only a short time to wait for the bus.	E1		5
(ii)	Cdf F(x) = $\int_{0}^{x} f(t) dt$ = $\frac{1}{200} \left(20x - \frac{x^2}{2} \right)$ = $\frac{x}{10} - \frac{x^2}{400}$	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=\frac{1}{10}-\frac{1}{400}$	A1	Or equivalent expression; condone absence of domain [0, 20].	
	P(X > 10) = 1 - F(10) = 1 - (1 - ¹ / ₄) = ¹ / ₄	M1 A1	Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area = $\frac{1}{2}(20 - 10)f(10)$, or similarity.	4
(iii)	Median time, <i>m</i> , is given by $F(m) = \frac{1}{2}$.	M1	Definition of median used, leading to the formation of a quadratic equation.	
	$\therefore \frac{m}{10} - \frac{m^2}{400} = \frac{1}{2}$ $\therefore m^2 - 40m + 200 = 0$	M1	Rearrange and attempt to solve	
	m = 40m + 200 = 0 m = 5.86	A1	the quadratic equation. Other solution is 34.14; no explicit reference to/rejection of it is required.	3
L		l		I

(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1 E1 E1		3
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1 E1	For "practical" accept e.g. convenient / efficient / economical.	2
				19

4768

Mark Scheme

June 2008

F	2	17
'	10	

Q2	$A \sim N(100, \sigma = 1.9)$ $B \sim N(50, \sigma = 1.3)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(A < 103) = P(Z < \frac{103 - 100}{1.9} = 1.5789)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.9429	A1	C.a.o.	3
(11)				
(ii)	$A_1 + A_2 + A_3 \sim N(300,$ $\sigma^2 = 1.9^2 + 1.9^2 + 1.9^2 = 10.83$)	B1	Mean.	
	O = 1.9 + 1.9 + 1.9 = 10.83) P(this > 306) =	B1	Variance. Accept sd (= 3.291).	
	$P\left(Z > \frac{306 - 300}{3 \cdot 291} = 1 \cdot 823\right) = 1 - 0 \cdot 9658 = 0.0342$	A1	c.a.o.	3
(iii)	$A + B \sim N(150, \sigma^2 = 1.9^2 + 1.3^2 = 5.3)$	B1	Mean.	
		B1	Variance. Accept sd (= 2.302).	
	P(this > 147) = P $\left(Z > \frac{147 - 150}{2 \cdot 302} = -1.303\right)$			
	= 0.9037	A1	c.a.o.	3
(iv)	$B_1 + B_2 - A \sim N(0,$	B1	Mean. Or $A - (B_1 + B_2)$.	
	$1 \cdot 3^{2} + 1 \cdot 3^{2} + 1 \cdot 9^{2} = 6 \cdot 99$ $P(-3 < \text{this } < 3)$ $= P\left(\frac{-3 - 0}{2.644} < Z < \frac{3 - 0}{2.644}\right) = P(-1 \cdot 135 < Z < 1 \cdot 135)$	B1 M1 A1	Variance. Accept sd (= 2.644). Formulation of requirement two sided.	
	$= 2 \times 0.8718 - 1 = 0.7436$	A1	c.a.o.	5
(v)	Given $\bar{x} = 302.3 s_{n-1} = 3.7$			
	Cl is given by $302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$	M1	Correct use of 302.3 and $3.7/\sqrt{100}$.	
		B1	For 1.96	
	= 302·3 ± 0·7252 = (301·57(48), 303·02(52))	A1	c.a.o. Must be expressed as an interval.	
	The batch appears not to be as specified since 300 is outside the confidence interval.	E1		4
				18

4768

Mark Scheme

June 2008

PMT

Q3					
(a) (i)	H ₀ : $\mu_D = 0$ (or $\mu_l = \mu_{ll}$) H ₁ : $\mu_D \neq 0$ (or $\mu_{ll} \neq \mu_l$) where μ_D is "mean for II – mean for I"	B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X}_{I} = \overline{X}_{II}$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	3	
(ii)	MUST be PAIRED COMPARISON <i>t</i> test.				
	Differences are: 10.0 26.8 42.7 2.4 -14.9 -2.0 \overline{d} = 11.6 s_{n-1} = 17.707	16.3 B1	$s_n = 16.563$ but do <u>NOT</u> allow		
	Test statistic is $\frac{11.6 - 0}{\frac{17.707}{\sqrt{8}}}$	M1	this here or in construction of test statistic, but FT from there. Allow c's \overline{d} and/or s_{n-1} . Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}$ (= 14.806) for		
	= 1.852(92).	A1	subsequent comparison with \overline{d} . (Or \overline{d} – (c's 2.365) × $\frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{d}$ scores M1A0, but ft.		
	Refer to <i>t</i> ₇ . Double-tailed 5% point is 2.365. Not significant. Seems there is no difference between the mean yields of the two types of plant.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_8 and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7	

(b)	Diff	-5	4	-14	-3	6		1	-11	-8	-7	-9			
	Rank of diff	4	3	10	2	5		1	9	7	6	8			
							M1	F	For differences. ZERO in this						
								S	section if differences not used.						
							M1	F	or rank	s.					
							A1	F	T from	here if	ranks	wrong			
	$W_{+} = 1 + 3 + 5 = 9$ (or $W_{-} =$						B1								
	2+4+6+7+8+9+10 = 46)														
	Refer to tables			paired	(/single	e	M1	N	o ft fro	m here	e if wroi	ng.			
	sample) statist				1 - 1 - 1				i.e. a 2-tail test. No ft from here if						
	Lower (or uppe				-tailed		A1			all test	. NO IT	from here if			
	5% point is 8 (ea).			~ 4		rong.	- 11					
	Result is not significant.						A1 A1								
	No evidence to suggest the tasters differ on						AI	π	only c	s test s	statistic	.	8		
	the whole.														
								_					10		
													18		

Mark Scheme

June 2008

Q4											
(-)	210										
(a) (i)	$\bar{x} = \frac{310}{100} = 3$.1				B1					
(.)			327	2 202							
	$s^2 = \frac{1288 - 1}{1288 - 1}$	//				B1					
	Evidence					E1					3
	variance is	s fairly cl	ose to th	ie mean.							
(ii)											
	f _o	6	16	19	18	17	14	6	4	0	
	f _e	4.50	13.97 2	21.65	22.37	17.33	10.75	5.55	2.46	1.42	
	Merged		2 .47						9.43		
				1	1		-	1		1	
						M1	Calculat		pected		
						A1 A1	frequence Last cell				
							All other			f wrong.	
						M1	Combini	مرالم	(Condo	na if nat	
							Combini combine				
							above, b	out requi	re top tw	o cells	
	$X^2 = 0.67$	47.00	244 . 0	0507 . 0		M1	combine	.)			
		47 + 0.3 6 + 0.034		0007 + 0	1.0003 +		Calculation of X^2 .				
	= 2.87	6(2)	-			A1	(Condone wrong last cell.)				
							Depends				
							precedin	ig ivi ma	rks.		
	Refer to χ	² / ₄ .				M1				- 2) from	
	e.g. Uppei	r 10% po	oint is 7.7	79.			wrongly				
							wrong.		inerwise	, no FT if	
	Not signifi					A1	ft only c'				
	Suggests					A1	ft only c'			1	10
	at any r	easonat	ne ievel	or signific	cance.	A1	Or other	Sensible	e comme	ent.	10
(b)	CI is giver										-
		1.465	±			M1	lf <u>both</u> 1	.465 and	d 0.3288/	$\sqrt{10}$ are	
			0.000				correct.				
			2.262	<u>-</u>		B1 B1	lf <i>t</i> ₀ use	he			
							95% 2-ta		or c'e t		
							distributi			of	
							previous		-		
			×	$<\frac{0.3288}{\sqrt{10}}$							
	- 1/6	5 + 0 22		√ ¹⁰ 298, 1.7(102)	A1	c.a.o. M	ust he e	vnresser	t as an	4
	- 1.40	0 ± 0.20	02- (1.Z.	200, 1.70	5021		interval.				
										17	